Introduction

The Oregon Department of Geology and Mineral Industries (DOGAMI) has been identifying and mapping the tsunami inundation hazard along the Oregon coast since 1994. In Oregon, DOGAMI manages the National Tsunami Hazard Mitigation Program, which has been administered by the National Oceanic and Atmospheric Administration (NOAA) since 1995. DOGAMI's work is designed to help cities, counties, and other sites in coastal areas reduce the potential for disastrous tsunami-related consequences by understanding and mitigating this geologic hazard. Using federal funding awarded by NOAA, DOGAMI has developed a new generation of tsunami inundation maps to help residents and visitors along the entire Oregon coast prepare for the next Cascadia Subduction Zone (CSZ) earthquake and tsunami.

The CSZ is the tectonic plate boundary between the North American Plate and the Juan de Fuca Plate (Figure 1). These plates are converging at a rate of about 1.5 inches per year, but the movement is not smooth and continuous. Rather, the plates lock in place, and unreleased energy builds over time. At intervals, this accumulated energy is violently released in the form of a megathrust earthquake rupture, where the North American Plate suddenly slips westward over the Juan de Fuca Plate. This rupture causes a vertical displacement of water that creates a tsunami (Figure 2). Similar rupture processes and tsunamis have occurred elsewhere on the planet where subduction zones exist: for example, offshore Chile in 1960 and 2010, offshore Alaska in 1964, near Sumatra in 2004, and offshore Japan in March 2011.

CSZ Frequency. Comprehensive research of the offshore geologic record indicates that at least 19 major ruptures of the full length of the CSZ have occurred off the Oregon coast over the past 10,000 years (Figure 3). All 19 of these full-rupture CSZ events were likely magnitude 8.9 to 9.2 earthquakes (Witter and others, 2011). The most recent CSZ event happened approximately 300 years ago on January 26, 1700. Sand deposits carried onshore and left by the 1700 event have been found 1.2 miles inland; older tsunami sand deposits have also been discovered in estuaries 6 miles inland. As shown in Figure 3, the range in time between these 19 events varies from 110 to 1,150 years, with a median time interval of 490 years. In 2008 the United States Geological Survey (USGS) released the results of a study announcing that the probability of a magnitude 8-9 CSZ earthquake occurring over the next 30 years is 10% and that such earthquakes occur about every 500 years (WGCEP, 2008).

CSZ Model Specifications: The sizes of the earthquake and its resultant tsunami are primarily driven by the amount and geometry of the slip that takes place when the North American Plate snaps westward over the Juan de Fuca Plate during a CSZ event. DOGAMI has modeled a wide range of earthquake and tsunami sizes that take into account different fault geometries that could amplify the amount of seawater displacement and increase tsunami inundation. Seismic geophysical profiles show that there may be a steep splay fault running nearly parallel to the CSZ but closer to the Oregon coastline (Figure 1). The effect of this splay fault moving during a full-rupture CSZ event would be an increase in the amount of vertical displacement of the Pacific Ocean, resulting in an increase of the tsunami inundation onshore in

rate of approximately 1.5 inches per year.

Oregon. DOGAMI has also incorporated physical evidence that suggests that portions of the coast may drop 4 to 10 feet during the earthquake; this effect is known as subsidence. Detailed information on fault geometries, subsidence, computer models, and the methodology used to create the tsunami scenarios presented on this map can be found in DOGAMI Special Papers 41 (Priest and others, 2009) and 43 (Witter and

This tsunami inundation map displays the output of computer models representing five selected tsunami scenarios, all of which include the earthquake-produced subsidence and the tsunami-amplifying effects of the splay fault. Each scenario assumes that a tsunami occurs at Mean Higher High Water (MHHW) tide; MHHW is defined as the average height of the higher high tides observed over an 18-year period at the Port Orford tide gauge. To make it easier to understand this scientific material and to enhance the educational aspects of hazard mitigation and response, the five scenarios are labeled as "T-shirt sizes" ranging from Small, Medium, Large, Extra Large, to Extra Extra Large (S, M, L, XL, XXL). The map legend depicts the respective amounts of slip, the frequency of occurrence, and the earthquake magnitude for these five scenarios. Figure 4 shows the cumulative number of buildings inundated within the

The computer simulation model output is provided to DOGAMI as millions of points with values that indicate whether the location of each point is wet or dry. These points are converted to wet and dry contour lines that form the extent of inundation. The transition area between the wet and dry contour lines is termed the Wet/Dry Zone, which equates to the amount of error in the model when determining the maximum inundation for the each scenario. Only the XXL Wet/Dry Zone is shown on

This map also shows the regulatory tsunami inundation line (Oregon Revised Statutes 455.446 and 455.447), commonly known as the Senate Bill 379 line. Senate Bill 379 (1995) instructed DOGAMI to establish the area of expected tsunami inundation based on scientific evidence and tsunami modeling in order to prohibit the construction of new essential and special occupancy structures in this tsunami inundation zone (Priest,

Time Series Graphs and Wave Elevation Profiles. In addition to the tsunami scenarios, the computer model produces time series data for "gauge" locations in the area. These points are simulated gauge stations that record the time, in seconds, of the tsunami wave arrival and the wave height observed. It is especially noteworthy that the greatest wave height and velocity observed are not necessarily associated with the first tsunami wave to arrive onshore. Therefore evacuees should not assume that the tsunami event is over until the proper authorities have sounded the all-clear signal at the end of the evacuation. Figure 5 depicts the tsunami waves as they arrive at a simulated gauge station. Figure 6 depicts the overall wave height and inundation extent for all five scenarios at the profile locations shown on this map.

Cascadia Subduction Zone Setting

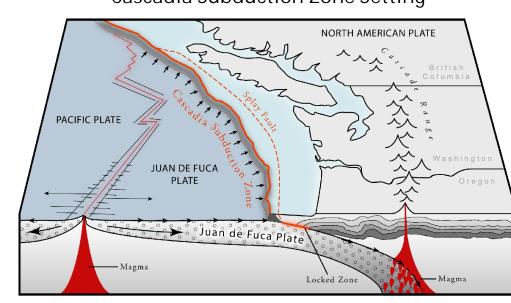
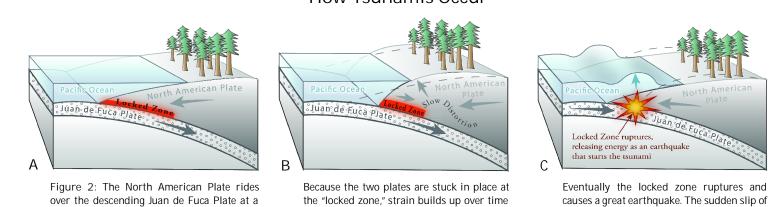
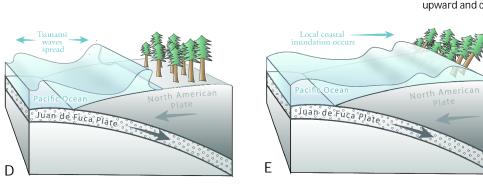
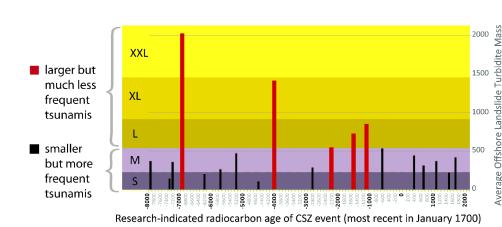




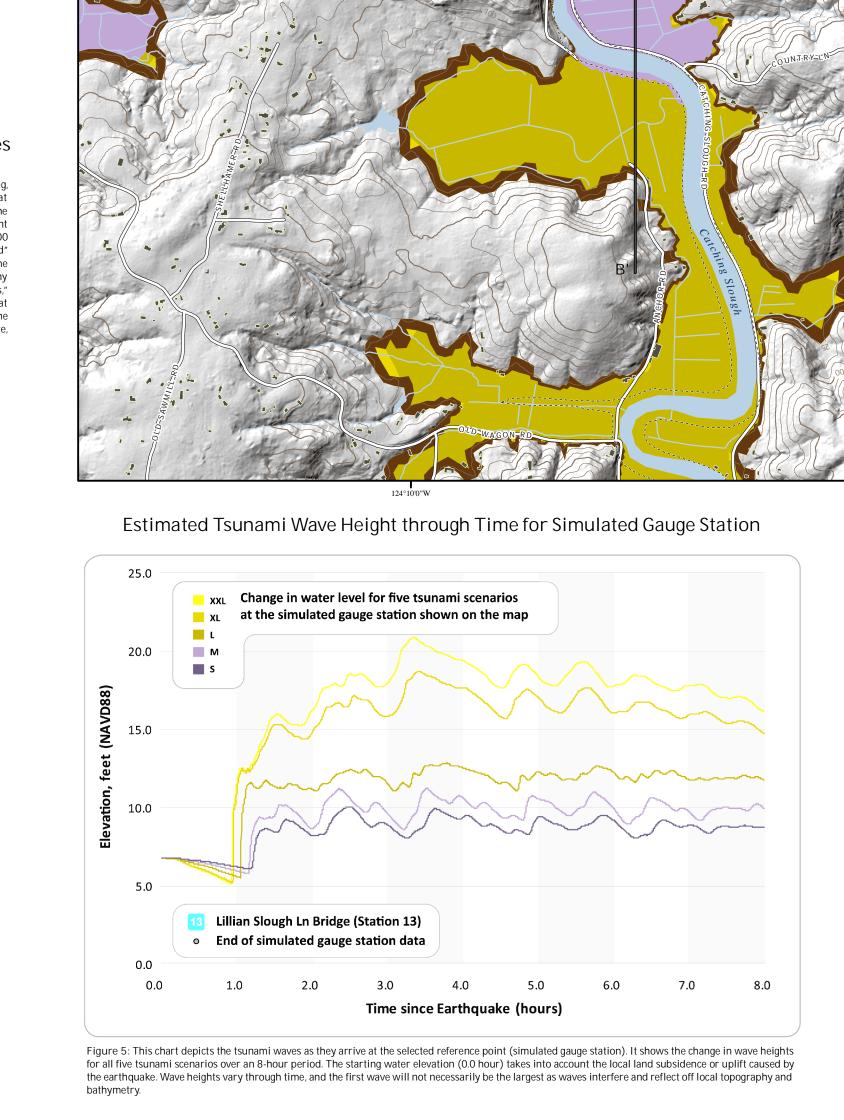
Figure 1: This block diagram depicts the tectonic setting of the region. See Figure 2 for the sequence of events that occur during a Cascadia Subduction Zone megathrust earthquake and tsunami.

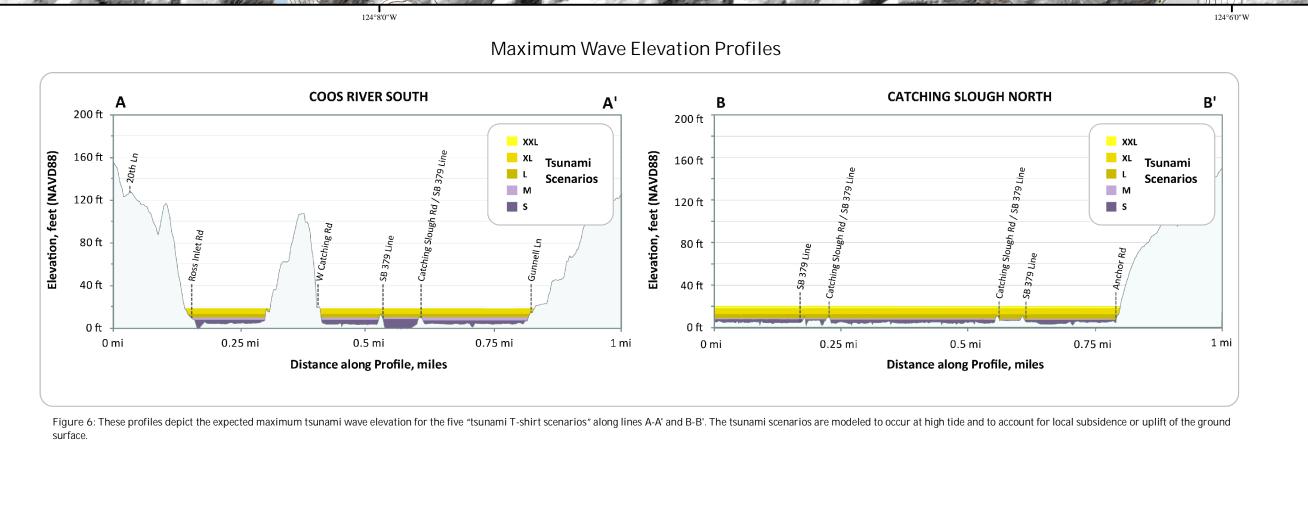


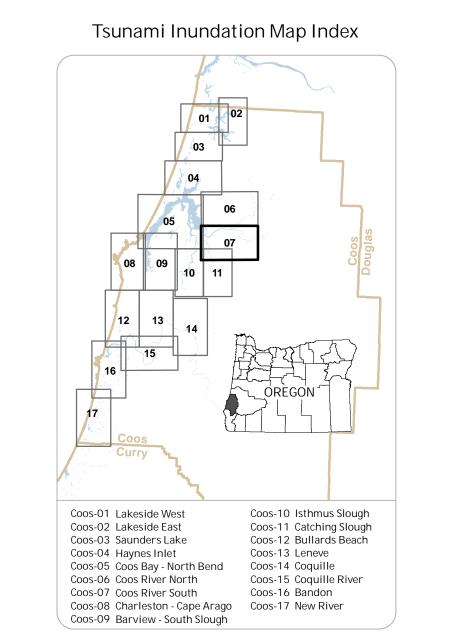
and the North American Plate bulges up.

Displaced and uplifted Pacific Ocean water Along the Oregon coast, tsunami waves run rushes in all directions. up onto the land for several hours.

Occurrence and Relative Size of Cascadia Subduction Zone Megathrust Earthquakes


frequency, and magnitude of the last 19 great Cascadia Subduction Zone events over the past 10,000 years. The most recent event occurred on January 26, 1700. The 1700 event is considered to be a "medium sized" event. The data used to create this chart came from research that examined the many submarine landslides, known as "turbidites," that are triggered only by these great earthquakes (Witter and others, 2011). The loose correlation is "the bigger the turbidite,


the two plates displaces Pacific Ocean water


Buildings within Tsunami Inundation Zones

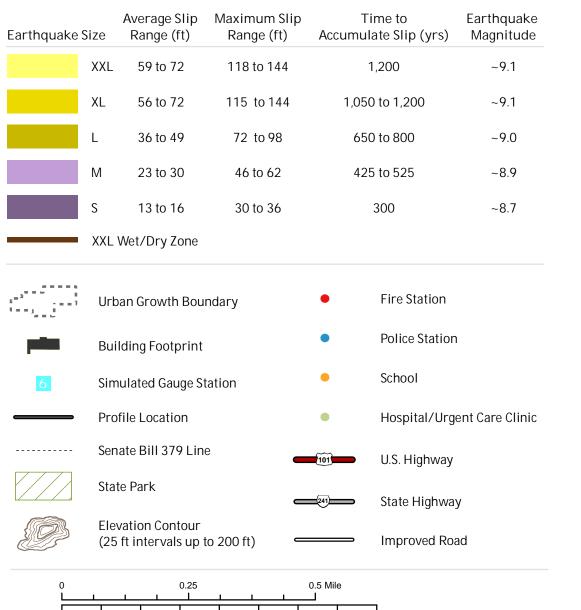


Figure 4: The table and chart show the number of buildings inundated for each "tsunami T-shirt scenario" for cities and unincorporated portions of the map.

0.25

Legend

Data References This map is based on hydrodynamic tsunami modeling by Joseph Zhang, Oregon Health and Science University, Portland, Oregon. Model data input were created by John T. English and George R. Priest, Department of Geology and Mineral Industries (DOGAMI), Portland, Oregon. Hydrology data, contours, critical facilities, and building footprints were created by DOGAMI. Senate Bill 379 line data were redigitized by Rachel R. Lyles Smith and Sean G. Pickner, DOGAMI, in 2011 (GIS file set, in press, 2012). Urban growth boundaries (2010) were provided by the Oregon Department of Land Conservation and Development (DLCD). present in the original data layer.

the northern Oregon coast: a multi-deterministic Transportation data (2008) provided by Coos County approach tested at Cannon Beach, Clatsop County, were edited by DOGAMI to improve the spatial accuracy Oregon: Oregon Department of Geology and Mineral of the features or to add newly constructed roads not Industries Special Paper 41, 87 p. Witter, R.C., Zhang, Y., Wang, K., Priest, G.R., Goldfinger, C., Lidar data are from LDQ-2009-43124-C1-DanielsCreek, Stimely, L.L., English, J.T., and Ferro, P.A., 2011, Simulating LDQ-2009-43124-C2-CoosBay, LDQ-2009-43124-D1tsunami inundation at Bandon, Coos County, Oregon, Allegany, and LDQ-2009-43124-D2-NorthBend. using hypothetical Cascadia and Alaska earthquake scenarios: Oregon Department of Geology and Mineral Coordinate System: Oregon Statewide Lambert Industries Special Paper 43, 57 p. Conformal Conic, Unit: International Feet, Horizontal Datum: NAD 1983 HARN, Vertical Datum: NAVD 1988.

Graticule shown with geographic coordinates (latitude/longitude). Software: Esri ArcGIS® 10.0, Microsoft® Excel®, and

Adobe® Illustrator® Funding: This map was funded under award #NA09NW54670014 by the National Oceanic and Atmospheric Administration (NOAA) through the National Tsunami Hazard Mitigation Program. Map Data Creation/Development: Tsunami Inundation Scenarios. George R. Priest, Laura L. Stimely, Daniel E. Coe, Paul A. Ferro,

Sean G. Pickner, Rachel R. Lyles Smith

Taylore É. Womble

Map Date: 07/19/2012

Cartography. Kaleena L.B. Hughes, Sean G. Pickner,

Text: Don W.T. Lewis, Rachel R. Lyles Smith Editing. Don W.T. Lewis, Rachel R. Lyles Smith

Publication. Deborah A. Schueller

Basemap Data. Kaleena L.B. Hughes, Sean G. Pickner

For copies of this publication contact: 800 NE Oregon Street, #28, Ste. 965 Portland, Oregon 97232

http://www.naturenw.org

2007 Working Group on California Earthquake

[http://pubs.usgs.gov/of/2007/1437/].

Open-File Report O-95-67, 95 p.

Probabilities (WGCEP), 2008, The Uniform California

Earthquake Rupture Forecast, Version 2 (UCERF 2): U.S. Geological Survey Open-File Report 2007-1437 and

Priest, G. R., 1995, Explanation of mapping methods and

Dregon Department of Geology and Mineral Industries

Priest, G.R., Goldfinger, C., Wang, K., Witter, R.C., Zhang, Y.,

and Baptista, A.M., 2009, Tsunami hazard assessment of

use of the tsunami hazard maps of the Oregon coast.

California Geological Survey Special Report 203