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Preliminary Geologic Map of the Robinson Butte 7.5' Quadrangle, Jackson County, Oregon

I ntroduction

The Robinson Butte 7.5' quadrangleis located slightly to the west of the present day
north-south oriented axis of the High Cascade vol canoes that stretch from British Columbia,
Canadato Mount Lassen in northern California. Figure 1 provides exact location
information on several levels: the maps indicate where the Robinson Butte quadrangleis
situated at the local, south-central Oregon, and Pacific Northwest scales. Topographically
the elevation ranges from approximately 2,190 feet where the South Fork of the Little Butte
Creek exits the quadrangle flowing to the west, to 5,854 feet, the summit of Robinson Buitte,
which islocated in the northeast corner of the quadrangle, and isits highest point. That
means there are 3,664 feet of topographic relief within the Robinson Butte quadrangle. Even
though the relief is not excessive, the ruggedness of the valley / canyon incised by the South
Fork of the Little Butte Creek dominates the northern half of the quadrangle. In Figure 2A,
a photo taken looking south across the upper part of the canyon formed by the South Fork of
the Little Butte Creek near the boundary between the Brown Mountain and Robinson Butte
guadrangles, the narrowness of the stream valley is quite evident. However, in Figure 2B, a
photo taken looking more to the southwest the greater width of the stream valley iseasily
discerned, and in Figure 2C, looking amost due west, the valley has reached its zenith in
terms of width. Given the canyon’ s increasing width to the west, one can imagine that from
above the canyon rim forms the shape of aflat-lying V with its vertex in the east and its two
arms extending westward. The local topography is a clear indication that the character of
erosion changes dramatically as the South Fork of the Little Butte Creek cuts its channel
deeper and deeper into the Miocene Heppsie Formation.

A number of abandoned quarries dot the Robinson Butte landscape. Lava flows and
pyroclastics were crushed and used as a source of aggregates for the construction of roads
over the past 4 to 5 decades (see Figure 3A, B, and C). Many of these quarries are located
within the Heppsie Formation, the oldest rock formation within the Robinson Butte
guadrangle. These ~20 Maigneous rocks are more weathered, fractured, and jointed than
the younger volcanic rocks present in the area, and are therefore somewhat less difficult to
process into aggregate.

Located at the extreme southern end of the Robinson Butte quadrangle is Howard
Prairie Lake, which is part of the Recreational Area System of Jackson County. In 1957-
1958 the nearly 30 m high Howard Prairie Dam was constructed on Beaver Creek in the
adjacent Hyatt Reservoir quadrangle (see Figure 1). Also, between 1956 and 1959 the
Howard Prairie Delivery Canal was fabricated that connects Howard Prairie Reservoir (see
Figure 4) with the Keene Creek Reservoir, a small reservoir on Keene Creek below Hyatt
Reservoir (in the Links section at the end of this document, the two web sites listed provide
ahistory of irrigation development in the Jackson — Klamath County region). At this small
reservoir, flows from Howard Prairie Canal combine with releases from Hyatt Reservoir
and the water departs the Klamath basin through the Cascade Divide Tunnel, which
connects Keene Creek Reservoir to Emigrant Creek in the Rogue River drainage basin.
Much of the surface water in the southeastern quarter of the Robinson Butte quadrangleis
diverted through a series of small canals and channels into this water system.

Three paved roads provide access into the Robinson Butte quadrangle. To the north,
Lake Creek Road, a dead end road that divergesto the southeast from Oregon State Route
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140 as one travels from Medford towards Klamath Falls. It follows the floodplain of the
South Fork of the Little Butte Creek and ends where the Dead Indian Creek joins the Little
Butte Creek (see Figure 1). Severa miles before the road’ s end is an intersection with the
Conde Creek Access road, which from the junction heads south and eventually joins the
Dead Indian Memorial Highway that crosses the southern section of the quadrangle and
provides much of the traffic into and out of the Howard Prairie Recreation Area. Lastly, in
the southeastern corner of the quadrangle the Keno Access road connects the Dead Indian
Memorial Highway with Oregon State Route 66 to the south and provides access to Howard
Prairie for the people who live in the area to the south of Klamath Falls. On a given summer
weekend a number of recreational vehicles will be encountered on al three roads as people
travel to Howard Prairie Lake for fishing, boating, and camping activities.

Before embarking on a broad examination of the geology of the Robinson Butte
guadrangle, acomment on rock nomenclature isin order. When geoscientists classify
igneous rock samples they often come at it from two points of view. One is based on
identifying the visible minerals in a hand sample (a modal mineral classification) and the
other is based on a chemical analysis of that sample (a chemical classification of igneous
rocks — see Figure 5 as an example). Naturally the latter is more precise and rigorous and
the former islooser and less precise and is open to more opinions. The most common
volcanic rocks (basalt, basaltic andesite, andesite, dacite, rhyolite) define a sequence in
which the iron- and magnesium-bearing silicate minerals (olivine, orthopyroxene,
clinopyroxene, hornblende, biotite) are most abundant on the left side of the sequence,
forming upwards of 50 to 60 percent of the minerals present and decrease to nearly zero to
the right, namely, in rhyolite. The remaining 40 to 50 percent of the rock consists mostly of
plagioclase feldspar, a non-iron magnesium bearing silicate mineral, plus afew percent of
chromium-, iron-, and titanium-dominated oxide minerals. With regard to rock chemistry,
silica (SI0O,) increases from basalt to rhyolite and correlates directly with increasing
viscosity and greater explosivity.

Table 1, which accompanies the geologic map of the Robinson Butte quadrangle,
contains the chemical and age data for all the analyzed rock samples. Figure 1 also depicts
the locations of all the samples for which ages exist, both within the Robinson Butte
guadrangle and in quadrangles immediately adjacent to it. These adjacent ages are depicted
because they are from extensions of the volcanic rock units found within the Robinson
Butte map area. The goa was to show all the ages for each volcanic unit discussed in the
Explanation of Map Units. Figure 5isatota alkali (Na;O + K;0) versus SiO, diagram that
summarizes the rock names that are most germane for the volcanic materials present in this
guadrangle. In addition the chemical data are displayed for each stratigraphic unit that is
defined below (except the Qls samples) using an individualized symbol that is summarized
in the legend that accompanies Figure 5. Lastly, Mertzman (2000) and Mertzman
(unpublished data, 2007 and 2008) provide many new ages, derived from both a whole rock
K-Ar method and “°Ar/**Ar technology that have been measured through January 2009.

In thisregion, the older phase of volcanism known as the Early Western Cascade
Episode extends from 35 to 17 Ma (late Eocene to the beginning of mid-Miocene time
[Gradstein and others, 2004]) while the younger phase of volcanism known as the Late
Western Cascade Episode covers the block of geologic time from 16.9 to 7.5 Ma (mid- to
late Miocene) (Priest and others, 1983; Priest, 1990). Only where erosion has removed the
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veneer of even younger High Cascade volcanic activity is evidence of older volcanic
activity apparent. Figure 6 has two parts. the upper portion (6A) is a histogram that
summarizes whole rock K-Ar and “Ar/*Ar ages determined solely on rock samples from
the Robinson Butte quadrangle. The lower portion of Figure 6 (6B) incorporates all the
geochronologic data from the upper diagram with absolute age data from adjoining
guadrangles. There is an unconformity (age gap) of 13 to 14 million years magnitude, from
essentially 20 to 6 Ma, which characterizes the volcanic activity within the Robinson Butte
guadrangle. The Heppsie Formation encompasses al the locally present volcanic material
erupted during Early Western Cascade Episode. This age data distribution is significantly
different from that reported in the Mule Hill quadrangle farther to the south (Mertzman and
others, 2008). In the latter region the Basalt to Andesite of Hayden Creek essentially bisects
the unconformity, extending from 15 to 13 Ma. Volcanism of corresponding age is
completely missing from the Robinson Butte segment of the Cascade Range.

The South Fork of the Little Butte Creek in the Robinson Butte quadrangle and the
Klamath River in the Mule Hill quadrangle have one striking geologic feature in common:
landslides. Asinitially reported by Hazlett and others (1997) and amplified by Mertzman
and others (2008), once the Klamath River had eroded down through the unconformable
surface described above, it encountered a hundred meters or more of weakly welded silicic
pyroclastic rock that forms the youngest segment of the Heppsie Formation. Be aware that
in both locations what are situated on top of the unconformable surface are almost
exclusively massive mafic lava flows. Once a stream of any magnitude has cut appreciably
down into the structurally much weaker pyroclastic material, the stage is set for the
development of landslides. This would be especially true at certain times of the year when
significant water soaks into the ground and moves downward towards the top of the
groundwater table. The added water would further reduce the cohesion along the
unconformity, setting the stage for alandslide if atriggering event like an earthquake
occurred at the right moment in time. The valley / gorge of the South Fork of the Little
Butte Creek degpens and widens quickly from the east side to the west side of the Robinson
Butte quadrangle. Landslide scars are numerous on both sides of the creek. Figure 2B
provides a broad perspective of the north-facing valley wall that appears scalloped from
side-by-side landslide scars. Figure 7 provides a close up image of the headwall area of a
relatively young landslide.

The upper portion of the Heppsie Formation consists of the most silicic rock in the
region. It is dacite to rhyolite in composition (see Figure 5 and Table 1) and was deposited
as part of one or more pyroclastic flow eruptions with their attendant air-fall tephrathat was
followed by the re-working of the uppermost material by surficial processes. The majority
of the Heppsie Formation consists of basalt, basaltic andesite, and andesite lava flows that
are abruptly overlain with silicic pyroclastic materia with no observable unconformity
separating its more mafic component from its more silicic component. Figure 8 depicts
columnar jointing in the welded portion of the tuff unit that crops out on the north side of
the South Fork of the Little Butte Creek. The photo was taken from the south side of the
stream looking to the north. The Short Creek drainage (see geologic map for exact location)
provided access to the moderately to intensely welded columnar jointed segment of the
pyroclastic flow (see Figure 9A). At thislocation the welded tuff restsontop of a3to4 m
thick columnar jointed basalt flow without a sign of a significant time gap (see sample 00-
62). Samples 00-63 through 00-66 are from the lower to the upper-most level (respectively)
in the columnar jointed outcrop of welded tuff depicted in Figure 9A. See Table 1 for

Oregon Department of Geology and Mineral Industries Open-File Report O-09-02



Preliminary Geologic Map of the Robinson Butte 7.5' Quadrangle, Jackson County, Oregon

sample geochemistry and Figure 5 for a graphic depiction of some of the chemical data.
Samples 00-62, 63, and 65 have “°Ar/*Ar ages available. Within the limits of precision for
each of these analyses the three ages are essentially identical, 21 Ma, which clearly signals
they are Heppsie Formation in age. Sample 00-63 is from the columnar jointed part of the
outcrop while 00-65 and 00-66 are from the upper 2 m of the outcrop in which therock is
perlitic obsidian in nature; that is, the glassy matrix is partially devitrified, so even though it
resembles obsidian, it rather easily breaks apart into pebble-sized fragments. Figure 9B
depicts the unsorted and unstratified material that forms the hill slope statigraphically above
the pyroclastic flow outcrop. Notice the abundance of pumice and lithic fragments. Much
handpicking was involved to collect alithic-free sample of just pumice fragments that
would truly represent the magma component only. In the Willow Lake quadrangle, located
immediately north of the Robinson Butte quadrangle (see Figure 1), Oregon State Route
140, which connects Medford to Klamath Falls, Oregon, follows the North Fork of the Little
Butte Creek stream valley. The road islocated on the north side of the creek itself. The
highway right-of-way is wide and cuts through 50 to 100 m of unstratified pyroclastic
material identical to that depicted in Figure 9B. Figure 10 provides a broader view of these
outcrops along this segment of State Route 140.

Basalt of Pole Bridge Creek (Tmbpb) is an enigmatic volcanic unit. It is part of the
initial volcanic activity that constitutes the early phase of Cascade volcanism that
commenced between 7 and 6 million years ago in this segment of the Cascade Mountain
chain. Lavas poured out onto aland surface that had been undergoing weathering and
erosion since the end of the Heppsie Formation volcanic activity nearly 20 Ma before. What
makes this unit so unusual isthat it istrachybasalt in nature (see Figure 5). The very high
akali element content (NaO + K,0), especially the K,0O, together with quite high Sr and
Ba concentrations, elements that can often substitute for K in anumber of silicate minerals,
are chemical characteristics that readily distinguish Basalt of Pole Bridge Creek from any
other rock unit between Crater Lake and the California border (see Figure 11A and 11B).
Basalt of Pole Bridge Creek lavas can be divided into two groups based on geochemical and
petrographic criteria. The precise details are given in the “ Explanation of Map Units’
section on Basalt of Pole Bridge Creek, but suffice it to say the group with higher MgO and
P,Os values also had sufficiently high water pressure valuesin the last magma chamber in
which the molten material resided prior to extrusion on to the Earth’ s surface. At depth, this
higher water pressure stabilized an amphibole, most likely hornblende in terms of its
chemica composition. That one finds amphibole existing together with phenocrystic
plagioclase, clinopyroxene, olivine, and an opaque mineral strongly suggests alower to
mid-crust depth for this Basalt of Pole Bridge Creek magma storage chamber. Granular
pseudomorphs have replaced the original amphibole as it reacted and dehydrated on its way
to the surface.

The latest phase of volcanic activity within the Robinson Butte quadrangleis
basaltic in composition and involves two point sources for this volcanism, one within the
guadrangle (Robinson Butte) and the other in the Lake of the Woods South quadrangle
(Burton Buitte), two quadrangles to the east. Although activities at both sources involved
diktytaxitic basalt with silica contents ranging between 49 and 52 percent SiO,, these two
basalts are rather easily distinguished on the basis of their hand sample mineralogy.
Although both are grayish, spongy textured basalts, Robinson Butte lavas characteristically
will have nearly equal amounts of 1 to 2 mm olivine and clinopyroxene phenocrysts that are
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easily visible with abundant plagioclase of similar to smaller size, whereas Burton Butte
lavas characteristically have 1 to 2 mm olivine phenocrysts with abundant plagioclase that
isalso similar to smaller in grain size. No clinopyroxene is evident in hand samples of
Burton Butte lavas. These observations are borne out with detailed petrographic
examination of thin sections. Also, the Robinson Butte lavas invariably have an
intergranular texture wherein small olivine and clinopyroxene granules< 0.1 mm in
diameter are scattered between laths of plagioclase feldspar. On the other hand the Burton
Butte lavas quite often will have a subophitic texture in which the somewhat later
crystallizing clinopyroxene molds itself around the margins of the earlier formed
plagioclase feldspar laths (rectangles).

Explanation of Map Units
Surficial Units

Qal Alluvium (Pleistocene to Holocene)—Unconsolidated sediment found in
close proximity to modern drainages. The gquestion mark on the Robinson Butte Map Plate’s
Time Rock Chart at the base of Qal isto clearly indicate the lack of definitive chronological
information with regard to the timing of initial Qal deposition.

Qls Landslide deposits (Pleistocene to Holocene)—Unconsolidated volcanic
brecciafound in close association with the South Fork of the Little Butte Creek, specifically
where it has down-cut into Mid-Miocene weakly welded silicic pyroclastic rocks that have
relatively thick, massive, mafic lava flows unconformably resting on top of them. Similar
geologic circumstances exist further to the south in the Mule Hill quadrangle along the
Klamath River (Mertzman and others, 2008) for which Hazlett and others (1997) have
suggested that the unconformity is a zone of structural weakness prone to slippage of the
massive, dense stack of lavas downhill under the influence of gravity given suitable friction-
reducing circumstances (significant rain or melting snows to |ubricate this boundary zone)
coupled with atriggering mechanism like an earthquake.

The question mark on the Robinson Butte Map Plate’ s Time Rock Chart at the base of QIs
isto clearly indicate the lack of definitive chronological information with regard to the
timing of initial Qls deposition.

Volcanic Units

Qbv Basaltic to basaltic andesite vent deposits (Middle Pleistocene)—Poorly
lithified to unconsolidated lapilli to ash-sized cinders, black to brown to red with lesser
amounts of similarly colored lava spatter, bombs, and scoria. These deposits mark volcanic
vents areas that are often scoria or cinder cones. The question mark over Qbv in the
Robinson Butte Map Plate’ s Time Rock Chart isthere to clearly indicate the lack of
definitive chronological information with regard to the timing of initial and final Qbv
extrusion.
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Qbbb Basalt of Burton Butte (Middle Pleistocene)—L.ight gray to dark bluish-
gray in hand sample color, lava samples are consistently lighter in color than that of
pyroclastic samples. Burton Butte cinder / scoria cone, the source of these lavas, is located
two quadrangles to the east in the Lake of the Woods South quadrangle. Pahoehoe lava
flows from Burton Butte spread westward nearly six miles, down the pal eo-drainage now
occupied by the Beaver Dam Creek all the way to Deadwood Prairie. Most samples have a
diktytaxitic (sponge-like) texture (see Figure 12) with a set of large vesicles present, several
mm to one centimeter in diameter, that are often lined to partially filled with secondary
mineralization, mostly carbonate with some silica and zeolitic minerals infrequently
present. The set of larger vesiclesis often stretched out to provide alineation parallel to the
last flow direction of the lava. Plagioclase, 0.5 to 2 mm in diameter, is the most abundant
mineral, constituting nearly 50 percent of atypical hand sample. Olivineis present as2to 3
mm phenaocrysts, which exist in glomeroporphyritic clumps, some of which are composed
entirely of olivine crystals; others contain plagioclase. Olivine is also present as smaller
crystals that range down to groundmass-forming material. Overall, olivine forms 15 to 25
percent of atypical sample. A similar amount of clinopyroxeneis present (15 to 25
percent), filling the interstices between the tabular |aths of plagioclase with olivine and
opagque mineral grains, thus forming an intergranular texture. If cooling was somewhat
slower, the clinopyroxene has a chance to form larger crystals that grow around and
partially envelope the earlier formed plagioclase crystals, thus forming a subophitic texture
(see Figure 13). Chromite, present within early-formed olivine crystals, together with
titanomagnetite and ilmenite, are the opagque minerals that constitute 8 to 10 percent of the
minerals present in these basaltic lavas. Several whole rock K-Ar ages are available for this
unit, none from the Robinson Butte quadrangle, and are characterized by relatively large
uncertainties. These relatively large error limits are due in part to the low whole rock K0
values for the Burton Butte basalt samples, < 0.3 percent, coupled with its young age. One
“OAr/*°Ar age has been quite recently determined on a sample from the Brown Mountain
guadrangle (see sample 91-5) and is preferable over all the others. Burton Butte volcanic
activity is0.33 + 0.12 Maoold.

Qbrb Basalt of Robinson Butte (Middle Pleistocene)—Light gray to dark bluish-
gray in hand sample color, lava samples are consistently lighter in color than that of
pyroclastic samples. Robinson Butte cinder / scoria cone, the source of these lavas, is
located in the extreme northeast corner of the Robinson Butte quadrangle. Two views of
Robinson Butte are provided in Figure 14A and B. Three to five meter thick lava flows with
pahoehoe surfaces are abundant. Vesicles 5 to 10 mm long, stretched out in the direction of
flow and partialy lined with vapor-phase-deposited secondary minerals, are common. The
lavaflows are only vaguely diktytaxitic in nature, most likely due to the slightly higher
silica content (~50 to 52 percent SiO,) than Burton Butte lavas that quite often display well
developed diktytaxitic texture. The lavas have a glomeroporphyritic texture with olivine (1
to 3 mm in maximum dimension), often distinctly rimmed with low temperature iddingsite
alteration, constituting 10 to 15 percent of each hand sample (see Figure 15). Poikilitic
within early-formed olivine crystals are chrome-spinel inclusions (see Figure 15). Abundant
clinopyroxene (1 to 3 mm) and plagioclase (0.5 to 1 mm) phenocrysts constitute nearly 50
percent of a hand sample and are present in glomeroporphyritic clumps as well as individual
crystals (see Figure 16). Severa per cent of the plagioclase phenocrysts present in the
Robinson Butte basaltic lavas have a strikingly different appearance than the vast majority
of plagioclase crystalsin that the crystals have been strongly resorbed into afine grained
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crystalline aggregate that have thin rims of unaltered later-formed plagioclase (see Figure
17). These severely altered phenocrysts could be xenocrysts, that is, foreign crystals
entrained by the rising Robinson Butte magma on its way to the surface. The groundmassis
primarily intergranular to subophitic in nature. One whole rock K-Ar ageis available for
this unit, 0.40 = 0.30 Ma, measured on a sample from the easterly adjacent Brown Mountain
quadrangle. One “’Ar/*Ar age has been quite recently determined on sample 00-67 from the
Robinson Butte quadrangle and is preferable because of its much better precision. Robinson
Butte volcanic activity is 0.36 + 0.06 Ma old. From a geologist’s point of view it isvery
interesting to note that the volcanic activity at Robinson Butte and Burton Butte are
virtually identical in age, which suggests these two volcanoes could have simultaneously
been erupting basaltic lava onto the southern Oregon landscape. As the chemical
compositions of basaltic lavas from Robinson and Burton Buttes are easily distinguishable,
one implication is that the plumbing systems for each of these two volcanoes are separate
and distinct.

Tpbbm Basalt of Brush Mountain (Upper Pliocene)—The Brush Mountain
volcanic vents are aligned in a NNW-SSE direction in the extreme south-central part of the
Brown Mountain quadrangle and extend into the Little Chinquapin Mountain quadrangle.
Numerous basaltic lava flows are found in both quadrangles that emanate from these linearly
arrayed vents. Brush Mountain basalts are medium gray as lavas and considerably darker
gray as the lavas become more vesicular in nature. These extrusive rocks are porphyritic with
plagioclase feldspar somewhat more abundant than olivine in phenocrysts that compose 10 to
15 percent of the basalts. These two minerals occur separately and in glomeroporphyritic
clumps that can range up to 3 mm in diameter. Pyroxene is mostly confined to the matrix.
Theolivineis partially altered to iddingsite, a characteristic that causes the olivine
phenocrysts to be much more darkly colored than the typical lime green; it also causes
olivine to be iridescent, particularly in shades of purple on newly broken surfaces. Two
whole rock K-Ar ages are available for this unit, 2.22 + 0.12 Maand 1.97 + 0.08 Ma old (94-
14 from the Little Chinquapin Mountain quadrangle and 94-16 from the Brown Mountain
guadrangle, respectively). Thereisonly asmall sliver of Basalt of Brush Mountain in the
southeast corner of the Robinson Butte quadrangle; its area is approximately 0.005 km?.

Tpbmp Basalt of Moon Prairie (Lower Pliocene)—These mostly olivine-phyric
lavas form the far southeast corner of the map area and have flowed from fissure-like vents
from which al the capping pyroclastic material has been eroded away. Severa of these
fissure/ very shallow dikes are found in the area and are marked by vertically aligned flow-
jointed linear features that are several tens of meters to more than 100 m long. In addition to
olivine-phyric lavas there are al so interspersed flows that have olivine and clinopyroxene
phenocrysts (see Figure 18), with plagioclase confined to mostly a groundmass status, as
well asflowsthat are substantially more granular wherein phenocrysts of plagioclase,
olivine, and clinopyroxene are readily identified. Part of the petrographic variability arises
from comparing lava flows (or parts therein) that cooled at different rates. However,
changing the sequence of mineral crystallization from spinel — olivine — clinopyroxene to
spinel —olivine — plagioclase requires a somewhat different bulk composition as opposed to
simple cooling rate changes. Spheroidal weathering is encountered at most of the outcrops
of thisunit. Olivine forms 15 to 20 percent of a hand sample as phenocrysts1to 4 mmin
diameter, many of which are partially to completely altered to iddingsite. Numerous small
grains of spinel are poikilitically enclosed within the olivine crystals, some of which have
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been partially atered to serpentine (see Figure 19). Plagioclase feldspar is the most
abundant mineral present but is often confined to the matrix as elongate rectangular crystals
(laths) that are flow aligned to produce a trachytic texture (see Figure 20). Present as
microphenocrysts and small-sized crystals, clinopyroxene is the only readily identifiable
pyroxene present in these light gray basaltic lavas. One “°Ar/*°Ar ageis available for this
unit, 4.51 £ 0.01 Maand comes from sample 99-14 located in the Brown Mountain
gquadrangle.

Tmbab Basaltic Andesite of Beaver Dam Creek (Upper Mioceneto L ower
Pliocene)—This unit is stretched across the west-central portion of the Brown Mountain
guadrangle and the east central portion of the Robinson Butte quadrangle. Similar to the
Basalt of Moon Prairie described immediately above, spheroidal weathering is the order of
the day when it comes to examining outcrops of this unit. Nearly every outcrop has one or
more very good examples of this weathering phenomenon. Individual rounded boulders
commonly display distinctive weathering rinds when broken open, with the most intensively
weathered material near the outside surface of the sample becoming less intensively
weathered as one penetrates further into the rock mass. This unit has a majority of lavas that
are basaltic andesite in composition; however, there are minor but persistent basaltic lavas
present as well. These light gray basalts are consistently of the olivine-phyric type with the
flow aligned phenocrysts of olivine ranging from 2 to 4 mm in length and constituting
nearly 20 percent of the volume of a hand sample. Many of these olivine crystals have been
partially to substantially altered to iddingsite (see Figure 21). One memorable occurrenceis
located north of Shell Rock Butte in the Robinson Butte quadrangle in which olivine
phenocrysts 3 to 6 mm in diameter have accumulated in alavaflow so that the modal
content is approximately 30 to 35 percent of the rock mass. The whole rock MgO contents
for these samples (see samples 94-42, 07SM-20 and 21 in Table 1) are in excess of 15
percent, which is 4 percent higher than any other value measured for samples from the
Cascade Mountains of southern Oregon. Compared to these basaltic lavas, the flows of
basaltic andesite have fewer phenocrysts and contrary to expectations, given their higher
silica content, are much darker bluish-gray. Plagioclase feldspar and olivine phenocrysts, 1
to 3 mm in diameter, constitute 3 to 5 percent of a hand sample’s volume and are nearly
equal in abundance. Pyroxene and much additional plagioclase are confined to the sample
matrix that is much finer grained than in the basaltic lavas. Hence, when breaking the
basaltic andesite lavain to smaller chunks, conchoidal fracture surfaces are very abundant.
Five whole rock K-Ar ages are available for this unit, 94-42 and 94-40 (5.54 + 0.15 Ma and
5.43 + 0.18 Ma, respectively) are located in the Robinson Butte quadrangle, while samples
91-43, 91-46, and 91-44 (5.82 £ 0.17 Ma, 5.08 £ 0.13 Ma, and 4.60 + 0.34 Ma,
respectively) are from the adjoining Brown Mountain quadrangle. One “Ar/*Ar ageis
available for this unit, 5.99 + 0.04 Ma, and is from sample 07SM-16 from the Robinson
Butte quadrangle. Thus, the full range of the radiometric ages for the Basalt Andesite of
Beaver Creek extends from 5.99 + 0.04 t0 4.60 + 0.34 Ma.

Tmbpb Basalt of Pole Bridge Creek (Upper Mioceneto Lower Pliocene)—The
Basalt of Pole Bridge Creek outcrops rather spectacularly in the region near the confluence
of Beaver Dam Creek, Pole Bridge Creek, and the South Fork of the Little Butte Creek in
the extreme west-central portion of the Brown Mountain quadrangle. On the east side of the
intersection the bluffs are held up by basalt lava flows and are capped by younger basaltic
andesite lavas. Individual bluffs have relief ranging from 35 to 60 m. The maximum
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thickness of the Basalt of Pole Bridge Creek is on the order of 70 to 80 m. It thinsrapidly
to the west so that in the Short Creek drainage in the Robinson Butte quadrangle, 2 to 2.5
km further to the west, the Basalt of Pole Bridge Creek has thinned to zero and the 0.4 Ma
old Robinson Butte Basalt lies directly upon early Miocene volcanic rocks of the Heppsie
Formation. A second patch of Basalt of Pole Bridge Creek lava crops out on the southwest
flank of Robinson Butte. A Middle Pleistocene basalt lava flow from Robinson Butte cuts a
major expanse of Basalt of Pole Bridge Creek into two segments asit flowed down the
Short Creek drainage. On the outcrop, lava flows range from platy jointed near the bases of
the flows, with individual plates 1 to 3 cm thick, to essentially massive in the interiors.
Individual hand samples are light gray and often possess two generations of vesicles. The
first generation of vesiclesislarger, forming spherical to oval shaped voids that are 0.2 to
0.5 cm diameter. The second generation of vesiclesis pinhead in size and spherical in
shape. Both vesicle types are quite fresh; that is, both are unfilled and unlined by secondary
mineralsin most locations. Inspection of Table 1 indicates that based on whole rock
chemistry there are two varieties of Basalt of Pole Bridge Creek. One is has higher
concentrations of K,O, Sr, and Bawhile the second isricher in MgO, P,Os, and Nb with
lesser amounts of KO, Sr, and Ba. Most of the Basalt of Pole Bridge Creek samples plot as
trachybasalts (see Figures 5, 11A, and 11B), a characteristic that makes these basaltic lavas
quite unusual and distinctive when compared to other basalts, for example, those erupted
from either Robinson Butte or Burton Butte. Comparatively speaking, these latter basalts
have much lower concentrations of the large ionic lithophile elements P,Os, K0, Sr, and
Baand are quite representative of other diktytaxitic textured basalts present in the
Oregonian Cascade Mountains (Hughes, 1990). Cascade lavas with similar K,0, Sr, and Ba
concentrations occur at Goosenest volcano (see Mertzman, 1992), but these Early Holocene
lavas are significantly higher in silicaand lower in P,Os than the Basalt of Pole Bridge
Creek lavas. Also unusual is both the size and abundance of clinopyroxene crystals, in this
case equal to or greater than olivine. Many basalts of similar silica content from this region
of the Cascades are dominated by olivine, with clinopyroxene relegated to a
microphenocryst and / or matrix constituent (Smith and Carmichael, 1968; Hughes, 1990;
Leeman and others, 1990). Basalt of Pole Bridge Creek lava flows range from nearly
aphyric, that is, phenocryst-free, to containing 20 to 25 percent small phenocrysts ranging
between 1 and 2 mm in maximum dimension and consisting of, in order of decreasing
abundance, plagioclase, clinopyroxene, olivine, and opaque minerals, a description that fits
very well the Group 1 Basalt of Pole Bridge Creek lavas (higher K0, Sr, and Ba) identified
above. Figure 22 clearly depicts the abundant plagioclase and clinopyroxene phenocrysts
with lesser amounts of olivine. Analogous to the clinopyroxene, the opague minerals are
unusually abundant in Basalt of Pole Bridge Creek lavas (10 to 12 percent of total
mineralogy) and crystallized early as evidenced by their inclusion within all the silicate
minerals listed above (see Figures 23A and 23B). This abundance of relatively early-formed
titanomagnetite crystals suggests a greater abundance of Fe*3, which is likely a product of
higher oxygen fugacity in the parental Basalt of Pole Bridge Creek magmas (McBirney,
2007). Group 2 of the Basalt of Pole Bridge Creek lavas, those with higher MgO and P,Os
coupled with lower K0, Sr, and Ba concentrations, have an additional mineral present that
isreally only noted in thin section. Figure 24 shows two prominent phenocrysts that have
been resorbed and the original mineral replaced by a granular aggregate of very small grains
dominated by an opague mineral. Both olivine and clinopyroxene phenocrysts that are only
amillimeter or two away from the totally replaced phenocrysts (pseudomorphs) arein
pristine form, with no sign of alteration. The shape of the pseudomorph depicted in Figure
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25 suggests that the precursor to the granular aggregates was an amphibole, perhaps
hornblende. The presence of amphibole pseudomorphs indicates a higher PH,O, which is
required to stabilize a hydrous mineral like hornblende. Although they are infrequently
encountered, Mertzman (2000) has noted several examples of amphibole pseudomorphs—in
each case the parental extrusive rock is more siliceousin nature, ranging from basaltic
andesite to andesite. One last petrographic observation that reflects both compositional
groups of Basalt of Pole Bridge Creek lavas is the widespread distribution of groundmass,
iron-rich biotite (see Figure 26). This mineral was the last one to crystallize in these lavas
and it islikely that it formed via sublimation (McBirney, 2007). Four whole rock K-Ar
ages, three from Robinson Butte quadrangle samples (92-21, 6.13 £ 0.10 Ma; RSP94-94,
5.73 £ 0.15 Ma; and JB91-56, 5.35 + 0.09 Ma) and one from the Brown Mountain
guadrangle (RSP-131, 6.14 + 0.15 Ma), have been determined on Basalt of Pole Bridge
Creek samples. One “Ar/*Ar ageis available for this unit, 4.35 + 0.04 Ma, and is from
sample 99-5 from the Brown Mountain quadrangle. Thus, the full range of the radiometric
ages for the Basalt of Pole Bridge Creek extends from 6.14 + 0.15t0 4.35 + 0.04 Ma.

Tmvhf Heppsie Formation (L ower Miocene)—The Heppsie Formation
constitutes the youngest portion of the Little Butte Volcanic Series. In this segment of the
Formation’ s outcrop areathe older extrusive rocks are dominated by basalt, basaltic
andesite, and andesite lava flows, whereas in the younger, upper portion, poorly to intensely
welded pyroclastic flow and air-fall tuffaceous material dominate. These latter extrusive
materials range from andesite to dacite to rhyolite in terms of their bulk composition. On the
outcrop the lavas are greenish-brown in surface coloration, often with several meters or
more of soil developed in situ. The most abundant mineral present in these lavasisthe
nonferromagnesian mineral plagioclase feldspar. It is often unaltered, but in numerous
locationsit is cut by small cracks and veinsfilled by sericite mica and calcite plus alittle
quartz (?). In the more mafic lavaflows of this formation, the ferromagnesian minerals,
olivine and pyroxene, have reacted very differently to changing physical and chemical
conditions. Whereas olivine has quite often been totally converted to iddingsite as a result
of relatively low temperature oxidation and hydration, pyroxene has been quite stable and
showslittleif any sign of ateration. As described in the introduction, the Short Creek
drainage, asit incises into the north-side valley wall of the South Fork of the Little Butte
Creek, has exposed in arather dramatic way the stratigraphy of the upper-most segment of
the Heppsie Formation. Let’s explore the section microscopically by examining a series of
photomicrographs. Sample 00-62 is at the base of the exposed section that is several meters
of rather typical columnar basalt. Olivine phenocrysts have been converted to iddingsite
(see Figure 27) that are enveloped in afine-grained matrix of plagioclase feldspar laths and
clinopyroxene crystals that are essentially unaltered. Directly atop the columnar basalt
without any manifestation of atime gap, samples 00-63 through 66 provide a cross-
sectional view through either a peculiarly zoned pyroclastic flow or two separate pyroclastic
flows separated by an unconformity for which thereis little physical evidence (Fisher and
Schmincke, 1984). To the north in the Willow Lake quadrangle there is some
geochronologic evidence that suggests the less silica-rich basal segment is older (see

" The upper portion of the Heppsie Formation is a poorly to moder ately welded
pyroclastic flow unit and ismixed in with the base of the landslide deposits along
sever al miles of the South Fork of the Little Butte Creek in the Robinson Butte
guadrangle. The Heppsie Formation isan integral part of the Qlsformation.
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Table 2 below, sample 02SM-8A) and the more silica-rich upper segment is younger (see
Table 2 below, sample 02SM-42). In many instances of chemically zoned pyroclastic flows,
the lower portion is more silica-rich and the upper portion isless silica-rich, the exact
situation one encounters at Crater Lake, Oregon (Williams, 1942; Beacon and Druitt, 1988).
Such achemical zonation on the outcrop is easy to visualize if one invokes the sequential
emptying of a somewhat stratified magma chamber that has been formed through
phenocryst fractionation and assimilation of wall rock somewhere within the mid- to upper
levels of the crust. Samples 00-63 and 64 are from the poorly to moderately welded section
of the flow in which pumice fragments retain much of their original shape and have not
been highly modified. Figure 28 provides a representative view of the pyroxene —
plagioclase mineralogy; both orthopyroxene and clinopyroxene have been identified, thus
making the most appropriate rock name, given its whole rock chemistry (see Table 1), atwo
pyroxene basaltic andesite to andesite ash-flow tuff. If hydrous minerals like hornblende
and / or biotite were ever present in this unit at this location, no conclusive petrographic
evidence has yet been discovered. Samples 00-65 and 66 provide aview either into the
more intensely welded portion of asingular pyroclastic flow (not as likely) or into the
second, upper-most pyroclastic flow that is more silica-rich. Figure 29 isalow
magnification image that depicts several percent of scattered small phenocrysts, mostly
plagioclase, and vesicles that are stretched out in the direction of flow. Figure 30 provides a
close view of aeuhedral plagioclase phenocryst that contains an included crystal of earlier
formed apatite situated in amatrix of flattened shards of pumice that define flowage lines
around the plagioclase crystal. One characteristic of the vesicles associated with pyroclastic
flows is vapor-phase crystallization around the vesicle walls. The usual mineralogy is that
of quartz and alkali-feldspar (Philpotts, 1989). Figure 31 depicts such atexture. Highly
flattened pumice fragments are one of the salient characteristics of intensely welded tuff.
Figure 32 documents such an occurrence and Figure 33 depicts intense flowage around a
glomeroporphyritic clump of pyroxene, plagioclase, and an opague mineral, most likely
titanomagnetite. Phenocrysts that are in equilibrium with the surrounding magma at the time
the magma begins to rise for its extrusion onto the earth’ s surface often show the effects of
that trip. The magma often heats up as a result of the decompression, and as aresult the
phenocrysts are no longer in equilibrium with the magma, so they begin to react with it. A
cuspate interface results from such a chemical reaction; the once sharp linear boundary
surface between the mineral and the magma takes on a seriated knife-like appearance as the
mineral dissolves preferentially at certain locations (see Figure 34).

Where the ash-flow tuff member of the Heppsie Formation has been exposed by erosion and
dueto itsinherent structural weakness, numerous landslides and slumps have their
beginning at or near the contact between younger more massive basaltic lava flows and the
older poorly welded ash-flow tuffs. In the Robinson Butte quadrangle several good
examples of arcuate headwall slump structures can be easily found in the canyon of the
South Fork of the Little Butte Creek. As one road-building civil engineer said to me
(S.A.M.) two summers ago while working on a bridge replacement project across the South
Fork, “Nothing in thisvalley is actually stable. Everything is moving downhill pretty fast,
particularly in the spring as the winter snows melt.” Also, numerous excellent examples of
landslides / Slump development can be found in the Mule Hill quadrangle (Mertzman and
others, 2008) in the Klamath River canyon along the California—Oregon border beginning
just below the John C. Boyle Powerhouse at what is known as the Caldera Rapid. In this
region avery similar layering of geologic rock units occurs as in the South Fork of the Little
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Butte Creek: older siliceous poorly welded tuffaceous material is overlain by younger, thick
occurrences of mafic lavaflows. It islikely that the same mechanism of slope failureis
occurring in both areas, giving rise to landslides/ slumps that set the stage for rapidsto
form in the streams that are flowing through the valleg/s. Thirteen ages for various Heppsie
Formation samples, both whole rock K-Ar and “Ar/*Ar ages, are available from the
general area north of the Klamath Falls-Ashland highway, State Route 66. A summary of
the geochronology available from samples my team and | have collected over the yearsis
provided in Table 2. The ages from the United States Geological Survey in Denver,
abbreviated USGS below, and New Mexico Institute of Mining and Technology,
abbreviated NMT below, are “Ar/**Ar ages. The age dates that | determined at Case
Western Reserve University, abbreviated CWRU below, are whole rock K-Ar samples.
Since the K-Ar whole rock ages are more susceptible to alteration and weathering processes
(notice that most Heppsie Formation K-Ar ages are < “Ar/*°Ar ages), the “°Ar/*Ar datais
much more likely to be accurate (Faure, 1986).

Table 2. Compilation of Heppsie Formation radiometric age dates.
An @indicates a “’Ar/3°Ar date; all other dates were determined by
the K-Ar dating method.

Sample # | Age (Ma) Source Quadrangle
00-65 21.1 £ 0.32 USGS Rob. Butte
00-63 21.2 £ 0.32 USGS Rob. Butte
00-62 21.10 £ 0.073 | USGS Rob. Butte
91-61 19.6 + 0.3 CWRU Rob. Butte
92-24 20.5+ 0.3 CWRU Rob. Butte
92-26 20.2 £ 0.3 CWRU Rob. Butte
92-41 19.5 +£ 0.3 CWRU Rob. Butte
07SM-3 21.49 £ 0.102 | NMT Rob. Butte
07SM-10 20.4 £ 0,32 NMT Rob. Butte

02SM-8A 21.15 + 0.083 [ USGS Willow Lake
025M-42 19.93 £ 0.072 | USGS Willow Lake

035M-21 21.73 £ 0.142@ | NMT Hyatt Res.

03SM-11 22.27 £ 0.133 | NMT L. Chinquapin Mtn.
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= Figure 2A. This view is looking
5% from the NE to the SW from the
i Short Creek drainage across the
A48 narrow, steep valley in which the
{ South Fork of the Little Butte
Creek flows.

Figure 2B. This image was taken
a mile or so further to the west of
Figure 2A and is looking from the
north to the south across the
valley. The stream valley has
widened considerably and the
valley wall in the far background
is the headwall for numerous
slumps / landslides that form the
hummaocky topography in the
foreground.

Figure 2C. Moving another mile
or so further to the west and
looking from the NE to the SW
across the South Fork of the Little
Butte Creek drainage, the stream
has now incised deeply into the
Heppsie Formation and the valley
walls are much less steep than in
both Figures 2A and 2B.
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Figure 3A. This currently unused
hard rock quarry located in the
SW quarter of the Robinson Butte
quadrangle provided darker
colored basaltic lava as starting
material for the aggregate industry.
The lavas depicted are part of the
Heppsie Formation.

Figure 3B. This hard rock quarry
is also currently unused and is
located in the west-central part of
the quadrangle. The lavas are
andesite in bulk composition and
are very well jointed, a feature that
facilitates their use as a source for
road building aggregates. The
lavas depicted are part of the
Heppsie Formation.

Figure 3C. This photo delineates
well-developed flow jointing in an
andesite flow of the Heppsie
Fomation. One can easily visualize
how this material could be more
easily broken up into aggregate
than more massive less jointed
basalt.
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Figure 4. Part of the delivery system of canals that carries water from Howard Prairie Lake to the
Rogue River drainage further to the west in Jackson County, Oregon.
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Figure 5. IUGS (International Union of Geological Sciences) classification system for volcanic rocks, which is
based on total alkali (Na,O + K50) vs. silica (SiO,) content, with the superimposed data from analyzed
Robinson Butte quadrangle samples (except specimens collected on landslides [QIs unit], and including three
Tpbbm samples from the southeasterly adjacent Little Chinquapin Mtn. quadrangle, plus two Tpbbm and five
Qbbb specimens from the easterly adjacent Brown Mountain quadrangle; see Table 1) (Le Maitre, 2002).
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Figure 6A. Histogram (number of samples with either aK-Ar or “°Ar/ *°Ar age date plotted as a
function of geologic timein millions of years) of the geochronol ogic data derived from Robinson
Butte quadrangle samples.
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Figure 6B. Histogram of the geochronologic data derived from Robinson Butte quadrangle samples
plus the eight surrounding quadrangles (see Figure 1).
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Preliminary Geologic Map of the Robinson Butte 7.5' Quadrangle, Jackson County, Oregon

| Figure 7. On the north side

| of the South Fork of the
Little Butte Creek approxi-
mately 3 km west of the
Short Creek drainage is the
location where this photo of
a headwall scarp of a moder-
ately sized landslide / slump
was taken. Qls, Quaternary
landslide deposits, dominate
both sides of the valley as
one travels further to the
west.

Figure 8. Looking from south to north across the more narrow, canyon-like portion of
the South Fork of the Little Butte Creek in the far eastern portion of the Robinson Butte
quadrangle, the crude columnar jointing pattern of the more intensely welded portion
of the pyroclastic flow(s?) that forms the upper-most portion of the Heppsie Formation
is well exposed by erosion.
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Preliminary Geologic Map of the Robinson Butte 7.5' Quadrangle, Jackson County, Oregon

north side of the South Fork of the Little Butte Creek in the far eastern portion of the
Robinson Butte quadrangle, massive columnar jointing is clearly evident in the lower
less intensely welded lighter colored portion of the outcrop which extends upward
through approximately half of the darker colored pyroclastic material. A sharp nearly
horizontal break cuts the vertically oriented columnar jointing pattern and coupled
with some “%Ar/®%Ar dates from the adjacent to the north Willow Lake quadrangle

(see Figure 1) combine to suggest the existence of at least two pyroclastic flows rather
than one chemically zoned flow.

Figure 9B. This photo depicts the
heterolithologic make-up of the
material that constitutes the non to
weakly welded section of the upper
portion of the Heppsie Formation.
Foreign rock fragments and pumice
pieces are held together by finer lapilli
and ash sized material.

b S & 5%
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Preliminary Geologic Map of the Robinson Butte 7.5' Quadrangle, Jackson County, Oregon

T T N T e v 2 4 : Lo il g
Figure 10. Easily worked by road grading equipment, slopes of poorly welded Heppsie Formation
pyroclastic flow material constitute a number of outcrops along the north side of Oregon Route 140
traveling west of Fish Lake and beyond the turn-off to Butte Falls.
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Preliminary Geologic Map of the Robinson Butte 7.5' Quadrangle, Jackson County, Oregon
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Figure 11A. To emphasize the distinctiveness of the Tmbpb lavas, chemical data was
plotted on a P,Og versus K,O variation diagram for it, Qbbb, and Qbrb. The data points for
the latter two units plot relatively near the origin, a chemical characteristic of many of the
basaltic units associated with the Cascade volcanic province (Hughes, 1990; Leeman and
Others, 1990). However, the Basalt of Pole Bridge is quite atypical and can be easily
separated into two groups based on petrographic and chemical criteria (see text and Figures

22-26).
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Figure 11B. The chemical distinctiveness of Basalt of Pole Bridge samples is well exhibited
by the Ba versus K,O diagram. Given the high MgO concentration in Tmbpb lavas there is
little evidence suggestive of extensive differentiation. Therefore, it is likely the elevated Ba
contents reflect the source of the Tmbpb magma. What mantle phase contributed the Ba to
the primary Tmbpb magma? Presently, there is no answer to this question.
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Preliminary Geologic Map of the Robinson Butte 7.5' Quadrangle, Jackson County, Oregon

Figure 12. This photomicrograph of Burton Butte lava was taken with the polarizing filters
crossed, thus producing the optical property known as birefringence where minerals such
as plagioclase are colored and isotropic substances like glass are black. The red arrows are
pointing out black voids that are irregularly shaped gas cavities known as vesicles. In this
type of lower silica basalt the vesicles are often intimately intertwined with the matrix
forming minerals forming what is termed a diktytaxitic texture.

Flgure 13 Also from Burton Butte lava thls photomlcrograph taken with uncrossed
polarizing filters, depicts a singular large olivine phenocryst that contains small opaque
crystals of chromite to magnetite and has a thin margin of brownish low temperature
alteration known as iddingsite (see right hand arrow). The left hand arrow is pointing out a
glomeroporphyritic clump of olivine and plagioclase feldspar crystals, suggesting that both
of these minerals precipitated out of magma simultaneously for some length of time. The
middle arrow is delineating a clinopyroxene crystal that has molded itself around the
margins of an earlier formed plagioclase crystal, thus forming what is known as a
subophitic texture.
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Preliminary Geologic Map of the Robinson Butte 7.5' Quadrangle, Jackson County, Oregon

Figure 14A. This panorama was photographed from the extreme south central margin
of the Robinson Butte quadrangle looking to the north-northeast and captures Robinson
Butte on the left side and Mount McLoughlin on the right side.

it

Figure 14B. This panorama was photographed from near the boat launch facility on the

north side of Fish Lake looking toward the west end of the lake. Robinson Butte is

ellipsoidal in shape and is broadly stretched out in a north-south orientation. It is likely
the result of what started out as a fissure eruption that subsequently became more of a
point source eruption that produced much pyroclastic material (bombs, lapilli, to ash-
sized material) in the form of a scoria ridge to cone structure.
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lava, taken in plane-polarized light, has two important features: the black arrows
point to early formed opaque crystals that likely range from chromite to magnetite
in composition and the orange arrows point to iddingsite alteration that has formed
on the margin of the phenocryst and permeated along the fracture passing into the
interior of the crystal.

: ¥ TL.om .
Figure 16. One of the distinguishing characteristics of Robinson Butte extrusive
material is the presence of both olivine (top arrow) and clinopyroxene (bottom arrow)
as large (2 to 3 mm in diameter) phenocrysts that are depicted in this photomicrograph
taken in plane polarized light. Please note the thin margin of iddingsite on the perimeter
of the olivine; note the lack of it on the clinopyroxene crystal.
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Figure 17. A second distinguishing characteristic of Robinson Butte extrusive material is th
presence of half dozen or so plagioclase feldspar phenocrysts, 1 to 2 mm in diameter, per hand
sample or thin section that do not resemble the majority population of plagioclase crystals. This
photomicrograph taken in plane polarized light depicts a severely corroded and resorbed plagio-
clase crystal that has had a clear stable margin precipitated around what is now the corroded

interior.

I -,;}E _I .-.‘-;'-') e;.
Figure 18. This photomicrograph taken under plane polarized light is from more coarsely
crystalline Basalt of Moon Prairie (Tpbmp) lava. The black arrow on the left is pointing out the
poikilitic opaque chromite to magnetite grains in olivine while the black arrow to the right is
indicating greenish serpentine, a hydrous layered secondary silicate alteration mineral formed
under low temperature conditions. Serpentine often forms veins that permeate primary olivine
crystals (Neese, 2004). The red arrow is indicating a clinopyroxene crystal that lacks both the
opaque inclusions and the serpentine alteration.
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Preliminary Geologic Map of the Robinson Butte 7.5' Quadrangle, Jackson County, Oregon

Figure 19. This photomicrograph taken under plane polarized light is from more
coarsely crystalline Basalt of Moon Prairie lava. The black arrow on the left is pointing
out the poikilitic opaque chromite to magnetite grains in olivine while the black arrow

to the right is indicating greenish serpentine, a hydrous layered secondary silicate
alteration mineral formed under low temperature conditions, forming veins that permeate
primary olivine crystals (Neese, 2004). Two red arrows are indicating clinopyroxene
crystals that lack both the opaque inclusions and the serpentine alteration.

Flgure 20. The most frequently encountered Basalt of Moon Prairie lava is one in which
olivine phenocrysts (see red arrows), often with iddingsite rims, are established in a fine
grained flow aligned matrix of much smaller crystals, forming a trachytic texture. This
photomicrograph taken under plane polarized light depicts such a texture in which
plagioclase and pyroxene constitute the sea of small grains in which the olivine phenocrysts
reside.
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Figure 21. All five arrows are pointing to olivine crystals of various sizes; each
partially altered to iddingsite. This photomicrograph taken under plane polarized light provides a
good example of what is termed “olivine-phyric basalt”; that is, basalt with phenocrysts of

only olivine with all the additional minerals being confined to the matrix of the sample. The

thin section texture depicted is best termed intergranular. The lava sample is from Tmbab
Basaltic Andesite of Beaver Dam Creek.

crystal has been

Figure 22. This photomicrograph of Basalt of Pole Bridge Creek (Tmbpb) group 1 lava taken
under plane-polarized light shows a glomeroporphyritic clump of clinopyroxene phenocrysts
(two black arrows on left hand side) that are quite poikilitic with opaque magnetite crystals.
Also depicted are plagioclase phenocrysts in euhedral rectangular-shaped (laths) (see middle
arrow) and small, unaltered olivine phenocrysts (see two arrows on right hand side of image).
The sheer amount of opaque mineral present and their relatively large sizes are noteworthy.

Oregon Department of Geology and Mineral Industries Open-File Report O-09-02

30



Preliminary Geologic Map of the Robinson Butte 7.5' Quadrangle, Jackson County, Oregon

Figure 23A. This photomicrograph is a close-up of Tmbpb lava with its characteristic
glomeroporphyritic clumps of clinopyroxene, with individual crystals quite poikilitic with
opaque magnetite grains (see arrow on the right). Olivine (see arrow on the left) is much
less abundant than clinopyroxene, an unusual occurrence in the basaltic rocks of the
Cascade Mountains of south-central Oregon.

< (el W P
Figure 23B. The lower left arrow in this photomicrograph delineates an olivine phenocryst
quite rich with opaque chromite to magnetite inclusions while the arrow on the right is
indicating a smaller phenocryst of clinopyroxene. The arrow toward the upper left corner
marks a mineral that is found only in the high K,O trachybasalt lava of Tmbpb. The
mineral is an iron-rich biotite that is pleochroic in brown, is consistently less than 0.1 mm
in diameter, and crystallizes very late in the solidification history of these lavas. It may be
the result of vapor-phase crystallization.
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Preliminary Geologic Map of the Robinson Butte 7.5' Quadrangle, Jackson County, Oregon

Figure 24. The arrow to the lower left in this photomicrograph taken under plane-polarized light of Group
2 (see Figures 11A and B) Tmbpb lava, is pointing out an irregularly shaped large vesicle. Working sequen-
tially from left to right the singular arrow delineated a long but thin phenocryst of clinopyroxene while the
double arrow radiating from a singular point mark two pseudomorphs that have replaced the original
mineral that had initially crystallized. This phenomenon is a unique characteristic of Group 2 Tmbpb lava.
A euhedral olivine phenocryst occupies the center of the photomicrograph and shows no sign of alteration.

T Ly
. . o

Figure 25. The pseudomorphs, in particular the one to the upper left portion of the photomicrograph, by
their external shape can provide a clue to the nature of the original primary mineral to crystallize. The six-
sided nature of the upper left form, together with the blunt terminations, is quite suggestive an amphibole,
mostly likely a member of the hornblende family of hydrous minerals. To the right the upper arrow points
to a clump of clinopyroxene phenocrysts; to the lower right is olivine with its ubiquitous inclusions of
opaque chromite to magnetite grains.
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Preliminary Geologic Map of the Robinson Butte 7.5' Quadrangle, Jackson County, Oregon
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Figure 26. In this highly magnified photomicrograph of Group 2 Tmbpb lava the four arrows
indicate scattered discrete anhedral crystals of iron-rich biotite. The high K,O content coupled
with the availability of iron and water vapor (fluorine may or may not be an important factor,
too) set the stage for the crystallization of this unusual groundmass-forming mineral.

Figure 27. This photomicrograph depicts the common state of olivine phenocrysts in
basaltic lava flows of the Heppsie Formation; that is, completely altered under low
temperature conditions to the mineral assemblage known as iddingsite (Baker and
Haggerty, 1976; Neese, 2004). Notice the euhedral shape of the original olivine crystal
has been preserved during the alteration process, thus forming a pseudomorph.
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Figure 28. While olivine has suffered considerable alteration within the Heppsie Formation,
this photomicrograph depicts the normal state of affairs for clinopyroxene (arrow to the
right) and plagioclase (two arrows on the left). The clinopyroxene is pristine; it shows no
sign of post-crystallization alteration. The plagioclase crystals are sometimes fractured with
some secondary minerals present in the cracks but for the most part the plagioclase is intact.

Figure 29. The following set of six photomicrographs (Figures 29 through 34) is from the
Short Creek stratigraphic section through the pyroclastic flow members of the upper-most
portion of the Heppsie Formation. This first photomicrograph taken under plane-polarized
light details the sparse number of phenocrysts typically present in the lower, less intensely
welded pyroclastic flow. Two plagioclase feldspar phenocrysts (upper left and lower right)
and two vesicles, centrally located, are noteworthy.
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Preliminary Geologic Map of the Robinson Butte 7.5' Quadrangle, Jackson County, Oregon

Figure 30. Within the phenocrysts of plagioclase feldspar (left hand arrow) as depicted in this
photomicrograph are often mineral inclusions of earlier crystallized minerals, in this case,
apatite (right hand arrow).

Figure 31. Around the exterior walls of many of the vesicles (see lower left arrow) within
pyroclastic flows, evidence for vapor phase crystallization will often be encountered. This
photomicrograph, taken under crossed polarizers to better see the birefringent mineral
grains that line the vesicle walls, depict quite small quartz and feldspar crystals that likely
formed after the crystallization event for the pyroclastic flow was complete. The vesicles
themselves (upper right arrow) are often stretched out in the direction of flow and
squashed by the weight of the overlying fragmental material.
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Preliminary Geologic Map of the Robinson Butte 7.5' Quadrangle, Jackson County, Oregon
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Figure 32. This photomicrograph is from the upper of the two pyroclastic flows that outcrop in
the Short Creek drainage, the one that is more siliceous and more intensely welded. Depicted in
this image taken in plane-polarized light is a flattened lump of pumice that owes its shape to a
combination of higher temperature and the weight of the overlying pyroclastic flow material.

. ,‘y \L B - . .-.‘.
Figure 33. Lines of flowage are vividly depicted in this photomicrograph taken in plane-
polarized light. Swirling about the early-formed phenocrysts of clinopyroxene (two arrows on
the right), plagioclase feldspar in the center, and an opaque mineral, most likely magnetite (two

arrows to the left), the glassy to cryptocrystalline matrix clearly portrays the intensity of the
extrusive event that formed this pyroclastic flow.

Oregon Department of Geology and Mineral Industries Open-File Report O-09-02

36



Preliminary Geologic Map of the Robinson Butte 7.5' Quadrangle, Jackson County, Oregon

Figure 34. This photomicrograph taken under plane-polarized light conveys two
messages. In the lower half of the image plagioclase feldspar (right arrow) has grown
around an earlier formed long thin euhedral apatite crystal (left arrow) and two opaque
mineral grains. Observations such as this one provides a clue concerning the sequence
in which the minerals have crystallized. In the upper portion of the image is the
external margin of a large plagioclase phenocryst. Note the indented nature of that
margin (see the two upper arrows) that forms what is termed a cuspate interface. It
looks something like a seriate edge of knife blade. This texture likely resulted from the
decompression of the magma as it moved to the surface, an event that often leads to a
temperature increase. Naturally the plagioclase crystal is no longer in thermal
equilibrium with its surroundings, so it begins to react, thus producing the texture
depicted above.
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Geologic Map of the Robinson Butte 7.5 Quadrangle, Jackson County, Oregon
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Geologic Map of the Robinson Butte 7.5 Quadrangle, Jackson County, Oregon
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